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Highly multimodal nonlinear guided wave approach based on Fourth and Fifth harmonic frequency conversion schemes 
using Total Internal Reflection Quasi phase matching is analytically described in a parallel slab geometry of magnesium 
oxide doped lithium niobate crystal. The guided wave optics approach provides more accurate and realistic results in 
comparison to plane ray optics. Effect of nonlinear law of reflection along with other optical losses like absorption, Goos – 
Hänchen -shift and reflection has also been taken into consideration while calculating the conversion efficiency. Various 
parametric changes, like variations in slab length and thickness, have also been studied. This scheme significantly 
improved the conversion efficiency compared to other approaches (e.g., Cascaded generation, periodic polling) utilized for 
the fourth-harmonic frequency conversion scheme. The conversion efficiency of 0.15418% and 0.00859%, corresponding to 
the Fourth and Fifth harmonic wavelength of 550 nm and 588 nm, have been observed in a 5 mm and 5.2 mm long crystal, 
respectively. 
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1. Introduction 
 

Nonlinear optics has developed into a prevalent and 

efficient technique for extending the frequency range of 

lasers from the ultraviolet to the visible, infrared, and 

terahertz ranges, as well as for generating coherent light 

sources over a wide bandwidth and ultrafast pulse lasers 

[1,2]. The interaction of laser light, either continuous or 

pulsed, with nonlinear crystals, leads to the achievement of 

these phenomena. Up-conversion techniques like Fourth-

harmonic (FH) generation and Fifth-harmonic (FTH) 

generation make it possible to extend to shorter 

wavelength ranges. FH generation is an effective approach 

for generating compact coherent light sources at new and 

shorter wavelengths. It is generally done by two stage-

cascaded nonlinear interactions, which involve frequency 

doubling of the fundamental wavelength, followed by 

second-harmonic generation in two consecutive crystals 

[2,3]. FH frequency conversion can also be achieved by 

another alternative technique known as the Quadrature 

frequency conversion scheme, where two nonlinear 

crystals are needed for each step of frequency conversion 

[3]. As multiple crystals are utilized in the frequency 

conversion process, it becomes more complex to achieve 

phase-matching configuration [2]. FH generation by a 

cascaded process in a single crystal is reported by Brett A. 

Hooper et al. [4] in LiNbO3, where conversion efficiency 

is 3.3×10-6. 

Akhmanov et al. [5] first reported the FH frequency 

conversion scheme in a single lithium formiate crystal by 

using effective fourth-order nonlinearity. Quasi-phase 

match (QPM) based direct FH frequency conversion in 

periodically poled LiNbO3 crystal was also reported by 

Xianfeng Chen et al. [6]. Thus, FH frequency conversion 

can be obtained using materials with fourth-order optical 

nonlinear χ(4) susceptibility. In case of QPM based FH 

generation in a nonlinear optical material with periodic 

poling, the fabrication of crystals with high and reliably 

confirmed quality is challenging and is possible only with 

certain crystal materials with fairly limited thickness. In a 

parallel plate, QPM can be achieved by TIR, which was 

first suggested by Armstrong et al. [5] in 1962. Resonant 

TIR-QPM based second harmonic generation has been 

demonstrated in isotropic semiconductors (GaAs, ZnSe, 

ZnS) by Boyd and Patel [7] as well as by Komine et al. 

[8]. In the same manner, non-resonant TIR-QPM for 

difference frequency generation in isotropic 

semiconductors has been reported by Haïdar et al. [9] . 

Harmonic frequency conversion scheme has been 

demonstrated analytically in this paper by utilizing the 

concept of Guided Wave Optics based TIR-QPM in a 

parallel anisotropic crystal slab made of Magnesium oxide 

(MgO) doped Lithium niobate (MgO:LN) material. In 
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order to satisfy the ever-increasing demand for wavelength 

conversion, nonlinear optical crystals have been 

developed. These crystals include MgO:LN, beta barium 

borate (BBO), potassium titanium oxide phosphate (KTP), 

lithium triborate (LBO), potassium dihydrogen phosphate 

(KDP), and lithium tantalate (LiTaO3) [10]. One of the 

most advanced and versatile nonlinear optical materials 

among them is MgO: LN[11]. It is also referred to as "the 

silicon of nonlinear optics." The fundamental material 

properties of MgO: LN have the potential to be utilized in 

a wide variety of applications in the real world [12]. The 

TIR coefficients are reduced on rough surfaces due to the 

light scattering that occurs during reflection [10,11]. The 

pv value of MgO:LN is lower than that of BBO[11]. When 

comparing MgO:LN to BBO, the effect of surface 

roughness is thus minimal. Therefore, Mgo:LN has been 

selected in this study. The Guided wave approach provides 

more accurate results compared to plane ray optics [9,13]. 

The effect of various limiting factors, i.e., linear 

absorption, surface roughness, Goos – Hänchen (GH) 

shift, and finally, the interference arising due to nonlinear 

law of reflection (NLR), has been considered to obtain a 

more realistic approach for the proposed frequency 

conversion scheme. The effect of variation in slab length 

and thickness on the resultant harmonic frequency 

conversion scheme has also been studied in this analysis. 

 

 

2. Proposed scheme 
 

In this paper, FH and FTH generation has been 

demonstrated analytically in a parallel slab geometry of 

MgO:LN by using the phenomena of TIR-QPM through a 

guided wave approach. With a Gaussian beam as the input 

source, the experimental setup for the suggested frequency 

conversion technique is depicted in Fig. 1. 

For the generation of FH, a continuous laser source 

configured to 2200 nm (or 2128 nm) utilized, whereas for 

the generation of FTH, a laser which is tuned to 2940 nm 

is utilized. The collimated light beam, which has a beam 

waist of 100 µm, is focused by an input coupling right 

angle prism which is situated at the top of the MgO:LN 

slab, and it is then permitted to propagate through the 

MgO:LN slab. A right-angle prism that is capable of 

coupling output may be utilized for the purpose of 

capturing the generated beam, while a Glass filter can be 

employed for selectively choosing the generated beam. 

The Harmonic beam could be captured by cameras that are 

fitted with charge-coupled devices at the focal length of 

the lens. In this parallel slab geometry, fundamental 

optical radiation of frequency 𝜔 having incident angle 

∅𝑖  with respect to the normal on the horizontal base of 

input coupling prism and thus refracted depending on the 

index of refraction of the selected material, i.e., MgO: LN. 

Refraction angle ∅𝑟  is calculated from Snell’s law of 

refraction, and it is given as 

-1 i
r

φ
= sin ( )

n
φ  

Here, n denotes the index of refraction of the chosen 

material (MgO: LN) for the corresponding fundamental 

and harmonic frequency, and it has been calculated from 

the standard Sellmeier Equation. 

Therefore, the incidence angle 𝜃𝑖 at the bounce point 

inside the slab is given as 

 

i rθ =φ  

 

 
Fig. 1. The geometry of the parallel slab represents the frequency conversion scheme 
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Now, if the angle of incidence inside the slab is 

greater than the respective critical angle for both 

fundamental and harmonic frequency, then the collimated 

optical radiations will go through repeated TIR inside the 

slab. The geometrical path length between successive 

bounces, also the incident angle for both the fundamental 

and harmonic waves remains the same throughout the slab 

length L as well, due to the parallelism of the geometry of 

the proposed slab. Type-I polarization configuration has 

been performed in this analysis where fundamental and 

harmonic waves are p and s polarized, respectively. 

 
 
3. Analysis of multi-mode by nonlinear  
   guided wave approach 

 

The nonlinear guided wave approach has been 

considered in this analysis to achieve the performance of 

the proposed FH and FTH frequency conversion scheme. 

As large number of modes are involved in the wave 

propagation within the guide, in the beginning, the guide 

wave method seems to be ineffective. But even if many 

hundred modes are envisaging through d, typically only a 

few tens of modes are actually taking part in the process 

[9,13]. Type 1 polarization configuration has been 

considered in this analysis where fundamental and 

harmonic waves are p and s polarized, respectively.  

s designates the polarization that is orthogonal to the 

plane of incidence and p the one that is parallel, one gets 

the following cases [9,14]: 

type 0 phase matching: ppppp, sssss 

type I phase matching: pssss, spppp 

type II phase matching: pppps, ssssp 

The direction of waves propagation and polarization 

vectors are considered along the x and y axes, 

respectively. The fundamental and harmonic field function 

for the parallel slab configuration can be written as [9] 

 

 
( )ω

yH (x,z,t) ( ) ( ) fi t z

f f f yA z H x e e cc
   − −

=  +      (1) 

 

( )

y ,E (x,z,t) ( , ) ( )
m
hi m t zm m m

h h h y yA r z E x e e cc
    − −

=  +

          

                                                                                       (2)                                                                                           

Here, m=4,5. 

where, varying amplitudes for the input mode f1 and output 

mode m are represented by
1
( )fA z

 and ( )m

hA z

respectively. 
1
( )fH x

and ( )m

hE x
represents the f1

th and 

hth order TM(p) and TE (s) wave function for input and 

output, respectively. 

The wave equation follows directly from Maxwell’s 

equations for the perturbed case and can be written as 

[9,15] 
2 2

2

2 2
( , ) [ ( , )]

y

y NL

E
E r t p r t

t t
 

 
 = +

 
        (3) 

 

Complex amplitude of nonlinear polarization terms 

for frequency conversion scheme can be written as [2] 

 

(4)                                                                                                                                                                                        

 

and,   ( )( , , ) ( ) i t z

x yE x z t H x e   



−=              (5)                                                                        

In the approximation of un-depleted pump, the 

equation of coupling mode between the fundamental and 

the harmonic waves can be derived from equations (1), 

(2), (3), (4) and (5) as [Appendix A] 
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1 2 3 4 5

1 2, 3 4 5 1 2 3 4 5 1 2, 3, 4 5

(5)
5

05

, 4 5

0 0 , , , , , , ,

{( )
( )

( , , , , ) exp( )}

L
f f f f f f

h y

f f f f f h f f f f f f f f f f h

A x i
p S A A A A A i L dz





    

 

  



= −
− 


 

(7) 

 

Here, Normalized power constant is given by 0p and it 

is corresponding to 1 W/m in the y-direction. Therefore,

0p can be expressed as 

2

0 ,

0 0

1
p .

2
m

f

h y

m

E Bdx E dx






  

 

− −

= = =      (8)                                                                                   

 

The overall integral for the FH and FTH generation 

scheme is given by this equation: [Appendix A, Eq. (A.15) 

and Eq. (A.16)] 
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(10) 

 

Here, sc is the sine function if 
1f is even (odd modes) 

and cosine if 
1f is odd (even modes). For very large values 

of modes ‘
1f ’ and ‘m’, the overall integral is non-zero and 

it is only if 
1 2 3 4f f f f h+ + + − =  ,   being mode 

mismatch. In addition, for small values of  ( 1 = ), 

the overall integral becomes more intensified. However, 

larger values of   tends to increase the non-collinearity 

( )

0 ( )m m

NL xP E =



Fourth and Fifth harmonic generation by Total Internal Reflection – quasi phase matching using the light of highly …         53 

 

angle among the interacting waves, resulting in lower 

spatial overlap. 

Again now, propagation constants mismatch is and it 

is given by 
1 2, 3, 4, ,f f f f h  

4

1 2, 3, 4 1 2 3 4, ,f f f f h f f f f h

         = + + + −  

where, 
`

2 2 2
( ) ( ) exp( )

g

f g

f

n k f
d K v



 






−
= −  and  

2 2 2
( ) ( ) exp( )m

m

h m

h

mn k h
d K v



 






−
= −  

Here, g=1, 2, 3, 4,5 and 
gf

K =1 for TE polarization 

and for TM polarization which implies the effect of 

Fresnel birefringence. The transverse and evanescent 

wavenumber for a waveguide thickness of ‘d’ has been 

given by [9] 

    2 2( ) ( )
g gf w fn k 

 = −                  (11)    

                            
2 2( ) ( )

g gf fk k 

= −  

gf

  can be obtained by using the equations (11) and (12) 

[13] 

2 2

2
tan( )

( ) ( )

g g

g

g g

f f

f

f f

k
d

k

 



 





=

−
.              (12) 

The mode amplitude 
gfA

 can be expressed by this 

equation [11]: 

 

2( )0
0

0 0

sin sin
2 sin { ( ) } { ( ) }

2 2 2g

g

F f

f g g

f

d d
A iL p e Erfi F f i Erfi F f i

d
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

   
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                (13) 

 

Here, 
0 is beam waist of fundamental gaussian beam 

and the function ( )gF f is given by this equation [9] 

 

01
( ) ( cos )

2 sin
g gF f k f

d


 



= −           (14)   

                                                                                                 

 And ( ) ( ),Erfi z iErf iz= − ( )Erf z  represents the 

error function [11]. 

For a given angle of incidence θi, (0)
gf

A
 is become 

maximum at gf ⁓
i

f , allowing about 10-20 modes to 

participate in a large number of modes. In general, these 

few tens of modes should be enough for the input laser 

beam [9,13] to be guided through the parallel slab 

geometry. Equation (13) implies that the propagation of 

Gaussian beam is focused around cos
k d

l 
 


 . Also, 

the amplitude of mode is highest for ( ) 0gF f = . In order 

to guiding wave, this condition must exist for an infinitely 

confining waveguide (ICW) [13]. In addition, the number 

of modes in excitation is approximately given by 

0

4 sind
l




  .  

Some numerical decompositions have been done here 

to understand roughly how many modes can be 

accommodated in the guide. For this, V-number has also 

been calculated, and it is given by 
2 2

0 1 2V k d n n= − . 

Here, 
0k  represents the wavenumber of the fundamental 

beam, t is the slab thickness, 
1n is the index of refraction 

of the MgO: LN and 
2n  is the index of refraction of air. 

1 3n n=  for a symmetric slab. 

Therefore, from equation (15) number of TE or TM 

modes in total can be the obtained as [13] 
1

2 2 2
1 2 3

1

2 2 2
1 2 int

( )1
{ tan }

( )

n n
N V

n n





−

 
− = −

 
−  

           (15)                                                                                                           

Here the parameter   =1 for TE modes and 

2

1

2

3

n

n
 =

for TM modes. Also, N represents an integer, whose value 

must be just greater than the value of the number in 

brackets. 

Now, it has been observed that 
𝑉

𝜋
 ⁓303 for 

fundamental input wavelength of 2.128 µm and slab 

thickness of 150 µm. Additional criteria that must be 

fulfilled is: 

 

 (2 1) (2 2)

302 302
{(2 1)} {2 2)}

2 2

303 304

n V n

V

V

 

 

 

+   +

=  +    +

=  

 

 

Accordingly, V


 can be calculated as 303 or 304. 

In this analysis, it has been found that asymmetrical 

modes are 
'n  =151, and symmetrical modes are 

' 1n +  

=152. Therefore, 10-20 modes have been taken in this 

analysis to describe the nonlinear guided wave approach 

for the FH frequency conversion scheme. 

Here, the optic axis is not parallel to the propagation 

vector of generated harmonic. Therefore, there is a 

propagation of the component wave (p and s) of the 

generated harmonic field 
hω

yE resulting in an additional 

phase shift of the component wave during consecutive 

bounces. Now, the Jones Vector concept has been used to 
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determine the component of wave 
mω

yE (p and s) in terms 

of Rotation Matrix R(α) [16] as follows, 

 

( )R  =[
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼

−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼
]                    (16)                                                                                              

For TIRQPM 

[

mω

y-pE

mω

y-sE
]= [

𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

] [
0
1

]=[
𝑠𝑖𝑛𝛼
𝑐𝑜𝑠𝛼

]          (17)  

                                                                                                               

The electric vector of a linear polarized wave is 

represented by the jones vector 𝜌𝑦= [
0
1

] , which works in 

the execution of a simple harmonic oscillation along the y 

axis having a zero phase with unit amplitude [16]. 

The effect of TIR has been incorporated for 

generating FH and FTH. The harmonic electric field for 

any intermediate length 𝐿𝑗  (j>1) for s and  𝐿𝑗−1(𝑗 > 0)  p  

wave can be written as [17], 

 
mω

y_s(TIRQPM)E (𝐿𝑗)={𝑒−𝑖∆∅1𝑐𝑜𝑠𝛼+𝑒−𝑖∆∅2𝑐𝑜𝑠2𝛼+….+ 

           𝑒−𝑖(𝑗−1)∆∅(𝑗−1)𝑐𝑜𝑠(𝑗−1)𝛼}
mω

y_sE (L1)                   (18) 

 
mω

y_p(TIRQPM)E (𝐿𝑗−1)={𝑒−𝑖∆∅1𝑠𝑖𝑛𝛼+𝑒−𝑖∆∅2𝑠𝑖𝑛2𝛼+….+ 

                𝑒−𝑖(𝑗−1)∆∅(𝑗−1)𝑠𝑖𝑛(𝑗−1)𝛼}
mω

y_pE (L1)             (19) 

 

The net electric field of harmonic for n number of 

bounces is given by 

mω mω mω

y 1 2 y_s(TIRQPM) y_p(TIRQPM) 1

1

E ( ..... ) {E ( ) E ( )}
n

n j j

j

L L L L L −

=

+ + + = +

 

                                                                                      (20) 

 

In terms of net harmonic electric field, the time-

average harmonic intensity Im can be expressed as 

 

*mω

y yE E
8

mm
m

n c
I 


=                        (21)                                       

 

Finally, conversion efficiency is expressed as 

 

1

100%m
con

I

I
 =                         (22)                                                                                                                  

where, 1I is the fundamental input intensity. 

         

 

4. Conversion yield limiting factors 
  
The efficiency of the frequency conversion scheme is 

limited by certain important factors, namely surface 

roughness, GH shift, absorption loss of the material, and 

diffraction due to NLR. 

 

4.1. Surface roughness 

 

Depending on the surface roughness, whenever a 

beam of light reflects from an interface, then it undergoes 

a phase shift. This deviation has two likely effects. Firstly, 

it initiates a noise on Fresnel phase shift which can be 

completely neglected, as the roughness is of the order of a 

few nm. Secondly, the roughness generates a dispersion of 

light. This finally leads to lowering down TIR coefficient 

(measured in terms of Strehl ratio). 

Light reflected having reflection coefficient R is a 

measure of drop, and it is a function of angle of incidence 

and input wavelength [9] 

 

4 2exp[-( cos ) ]i

n
R


 


= ≈

4 21- ( cos )i

n
 


 (23) 

We have assumed =pv value and 
12


σ = . A pv 

value of 6 nm has been taken into consideration for 

incorporating the effect of surface roughness [11]. 

 

 

4.2. GH shift 

 

During Total internal reflection of the collimated light 

beam between two dielectric media, the reflected beam 

undergoes a longitudinal shift between the incident and 

reflected beams is expressed as [18] 

 

𝑆𝐸 = (
2

𝑘𝑖
)

𝑡𝑎𝑛𝜃𝑐𝑟𝑖

(𝑠𝑖𝑛2𝜙−𝑠𝑖𝑛2𝜃𝑐𝑟𝑖)1/2              (24)                                                                                                                                                                                                          

𝑘𝑖 = 2𝜋𝑛𝑖 𝜆𝑖⁄  

 

Here, 𝑘𝑖 is the wave vector of vacuum wavelength 𝜆𝑖, 

𝑛𝑖  is the index of refraction of denser media, 𝜙 is the angle 

of incidence, and 𝜃𝑐𝑟𝑖 is the critical angle. Due to the GH 

shift, there will be a reduction in the usable length of the 

crystal. In this analysis, the shift has been computed for 

both upper and lower surfaces. Therefore, the pump 

wavelength of 2200 nm has encountered a GH shift of 1.8 

μm for the corresponding slab length of 8 mm. 

 

4.3. Absorption 

 

Linear absorption can be very harmful to frequency 

conversion and severely limits the conversion efficiency. 

Typically, linear absorption coefficients, ( 𝛼𝜔
′  and  𝛼4𝜔

′
) 

is much less than 1. Usually, absorption of the 

fundamental cannot be entirely eliminated; however, at 

very low absorption, it is sometimes masked by scattering. 

Absorption has another harmful effect on material heating. 

Absorption can also generate a drift in the phase matching 

conditions and a drop in conversion efficiency [9]. 

 

4.4. Diffraction due to NLR 

 

According to NLR, a homogeneous FH field is 

generated at the interface by the nonlinear polarization 

vector in addition to the generation of the collinear FH 



Fourth and Fifth harmonic generation by Total Internal Reflection – quasi phase matching using the light of highly …         55 

 

field in order to satisfy the conservation of wave 

momentum parallel to the boundary [19]. It follows the 

Snell – Descartes principle: 

𝑛𝝎 sin 𝜃𝜔 = 𝑛4𝜔 sin 𝜃4𝜔                  (25) 

where 𝑛𝝎 and 𝑛4𝜔 are the refractive indices at the 

fundamental and generated FH respectively, 𝜃𝜔 and 𝜃4𝜔 

are the incidence angles of fundamental and FH, 

respectively. 

The angle variation between the colinear and 

homogeneous FH wave is given as [20] 
 

( / ) tann n    −                   (26) 

Here, 𝛿𝑛 = 𝑛4𝜔 − 𝑛𝜔is the optical dispersion, and 

𝑛 ≈ 𝑛4𝜔 ≈ 𝑛𝜔. 

𝑁𝑟𝑒𝑐 ≈ 2|tan 𝜃𝜔 𝛿𝜃⁄ | ≈ 2|𝑛 𝛿𝑛⁄ |             (27) 
 

This non-collinearity has two effects: first, spatial 

walk-off and second, the recombination between the field 

wave inside the slab, which gives the destructive or 

constructive interference at different bounce points. Fig. 2 

shows the impact of NLR. 

 
 

Fig. 2. Generation of collinear and “homogeneous” FH waves at the air-crystal interface 

according to law of Non-linear Reflection (colour online) 

 

 

5. Simulation results and discussions 
 

The computer-aided simulation for the parallel slab In 

the computer-aided simulation, the input fundamental 

beam intensity has been assumed as Iω = 7.5 MW/cm2 

with due consideration of the damage threshold value of 

MgO: LN [18]. The material that is chosen is MgO:LN, an 

anisotropic material. For the FH frequency conversion 

with FH wavelength of 550 nm, all bounce lengths into the 

parallel slab geometry of MgO:LN have been added up to 

obtain the total interaction length. The resultant value 

comes to about 1.031 cm. Rayleigh range has also been   

computed for the same wavelength for a beam waist of 

100 μm which comes out to be 1.3481 cm, thus satisfying 

the Rayleigh range condition.        
 

Lambda = 2.2 µm, temperature = 298 k, θi = 0.478 radian, d=150 µm, 

x=0.5 µm 

 
Fig. 3. Variation in Net total phase shift as a function of the 

number of bounces for generating 550 nm FH wavelength 

The efficiency peak is obtained corresponding to an 

application wavelength of 550 nm is 0.15488%. The 

effects of variation in slab length and thickness have been 

studied on the FH conversion efficiency for the parallel 

slab configuration of MgO:LN under consideration.  
According to the TIR-QPM phenomenon, every 

bounce point of TIR is responsible for the generation of a 

colinear harmonic field. Each TIR bounce will also 

generate a homogeneous harmonic due to NLR (Fig. 2). At 

every bounce location of TIR, two distinct generations of 

harmonic occur one collinear harmonic generated by 

second-order interaction that propagates at an angle that is 

identical to incidence angle, i.e., and another 

homogeneous harmonic, which travels at an angular shift 

of with regard to the collinear harmonic. Apart from these 

two new generations at any given bounce point, the fields 

that are caused by the harmonics (both collinear and 

homogeneous) generated at all of the preceding bounce 

locations, which have experienced Fresnel phase shifts at 

each consecutive bounce point [9]. At the subsequent 

bounce point, the harmonic that was generated at the first 

bounce point will go through a Fresnel phase shift and will 

correspondingly contribute to the collinear harmonic that 

is generated at that bounce location of TIR.  

After accounting for the relative shift in phase 

between the two generated harmonic waves, the net field 

amplitude of harmonic at this bounce point has been 

determined. The harmonic field at the following bounce 

point has also been computed because of the generation of 

collinear and homogenous harmonics. The same process 

will be repeated at the subsequent bounce point and, so on. 

Finally, the net electric field generated at the exit point has 

been obtained by adding the two field contributions, due to 

 

Non-Linear 

material(crystal) 

Kω Fundamental 
Kω Fundamental 

K4ω FH Collinear 
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θω 

θ4ω 
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collinear as well as homogenous harmonics, along with 

their net phase shifts. The effectiveness of the conversion 

is substantially impacted by the re-combinative 

phenomena that are caused by the NLR. This recombinant 

phenomenon illustrates a combination of destructive and 

constructive interference occurring between the collinear 

(Each bounce causes a phase change of either 0 or 2π) and 

homogeneous harmonic (The phase shift undergoes 

variation from 0 to π while propagating) fields that are 

generated by the frequency conversion process. As a 

consequence of these subsequent recombinational events, 

the radiation efficiency of the system diverges 

substantially, leading to constructive or destructive 

interference at respective bounce sites. 

 

 

5.1. Effect of variation in slab length 

 

During the propagation of the collimated beam inside 

the parallel slab geometry of MgO: LN, the length 

between two consecutive bounce points and angle of 

incidence are fixed at each bounce point. The angle of 

incidence has been chosen in such a way that the length 

between two consecutive bounces is equal to an odd 

integer multiple of the coherence length for the input 

wavelength under consideration as well as the condition 

for constructive interference is also satisfied. 

By keeping the slab thickness constant throughout this 

part of the analysis and increasing the slab length, it has 

been observed that that the peak conversion efficiency 

increases up to a certain slab length and then starts to fall. 

Due to the NLR at each bounce point, two FH waves are 

generated. The angle of separation increases as both waves 

propagate, creating a spatial walk-off, which reduces the 

overlapping conditions between the interacting waves. 

Therefore, when the beam travels through the slab, they 

tend to have a phase difference of 2π, causing constructive 

interference and hence an increase in efficiency. Similarly, 

when the beams tend away from a phase difference of 2π, 

they undergo destructive interference causing a drop in 

efficiency. 

Fig. 3 shows the variation in the total phase shift of 

the resultant fourth harmonic field with respect to the 

number of bounces for generating 550 nm wavelength 

where the number of TIR bounces increases from 10 to 40 

with the increase of slab length from 4 mm to 7 mm. From 

Fig. 3, it is observed that the net total phase shift for the  

resultant fourth harmonic field is approximately 0 at 20 

and 40 number bounce points. Therefore, constructive 

interference occurred at 20 and 40 number bounce points. 

Table 1 and Table 2, along with Figs. 4, 5, 6 and 7, give an 

illustration of it. 

 

 

 

 

 

 

 

Lambda = 2.2 µm, temperature = 298 k, θi =0.478 radian, d = 150 µm, 

x = 0.5 µm 

 
 

Fig. 4. Variation in efficiency as a function of slab length for 

generating 550 nm FH wavelength 

 

Lambda=2.2 µm, temperature = 298 k, θi = 0.478 radian, d = 150 µm, 

x = 0.5 µm  

 
 

Fig. 5. Variation in efficiency as a function of the number of 

bounces for generating 550 nm FH wavelength 

 

Lambda = 2.128 µm, temperature = 298 k, θi =0.81507 radian, d=150 

µm, x=0.5 µm 

 
 

Fig. 6. Variation in efficiency as a function of slab length for 

generating 532 nm FH wavelength 
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The impact of increasing the length of the slab for 

generating 550 nm and 532 nm wavelengths is shown in 

Figs. 4, 5, 6, and 7. From Figs. 4 and 5, it is observed that 

constructive interference occurred at the 25th bounce 

point, i.e., at the slab length of 5 mm, and the maximum 

efficiency at that bounce point is 0.15488% for generating 

550 nm wavelength when nonlinear guided wave approach 

is considered. In the same way from Figs. 6 and 7, it is 

observed that maximum efficiency of 0.11872 % is 

obtained for generating 532 nm wavelength at 34th bounce 

point, i.e., at slab length of 11 mm. Figs. 8 and 9 have 

been employed to further analyze the variations in slab 

length and the number of bounces to generate the 588 nm 

FTH wavelength. Figs. 8 and 9 demonstrate that 

constructive interference has occurred at the 16th bounce 

positions, which correspond to the lengths of the slabs 

being 5.2 mm. 

The effect of slab length variance on the performance 

parameter has been shown in Table 1. 

 

 

 

 

 

5.2. Effect of variation in slab thickness  

 

When the thickness of the slab has been varied from 

151 to 159 μm in steps of 2 μm, the efficiency under the 

Ray optics approach and on consideration of the nonlinear 

guided wave approach decreases with the increase in slab 

thickness. The decrease in conversion efficiency is due to 

the decrease in the number of bounces with the increase in 

slab thickness. 

During thickness variation, the angle of incidence has 

been chosen in such a way that the geometric path length 

between two consecutive bounce points is equivalent to an 

odd integer multiple of the coherence length for the input 

wavelength under consideration, as well as the condition 

for constructive interference is also satisfied. The angle of 

incidence during thickness variation is also chosen in such 

a way that the order of QPM for different application 

wavelengths of 532 nm, 550 nm 9, 11, respectively, and 

the maximum efficiency obtained at these wavelengths is 

0.10576%, 0.14486%, respectively. The maximum FTH 

conversion efficiency of 0.00395% has been obtained for 

the generation of 588 nm wavelength. The effect of 

thickness variance on the performance parameter has been 

shown in Table 2. 

 

 
Table 1. When MgO:LN waveguide is subjected to slab length variation (L). d=150 µm, I1=7.5 Mw/𝑐𝑚2, 

 temperature = 298 k, x = 0.5 µm 

 

Input 

Wavelength 

(nm) 

Output 

Wavelength 

(nm) 

𝜑𝑖 

(radian) 

Slab length 

(mm) 

Efficiency (%) 

 

Ray 

optics 

Approach 

Nonlinear 

Guided 

Wave 

approach 

2200 550(FH) 0.4782 4 0.71598 0.14872 

5 0.75477 0.15418 

7 0.66757 0.13381 

8 0.58275 0.11624 

9 0.40785 0.08061 

2128 

 

 

 

 

 

2940 

532(FH) 

 

 

 

 

 

588(FTH)      

0.81507 

 

 

 

 

 

0.496 

5 0.36525 0.05482 

6 0.45784 0.07166 

11 0.79914 0.11872 

15 0.79456 0.11786 

17.7 

4 

5 

5.2 

6 

0.74894 

0.02905 

0.03104 

0.03111 

0.03048 

0.11082 

0.00803 

0.00857 

0.00859 

0.00843 
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Table 2. When MgO:LN waveguide is subjected to slab thickness variation (d). L=8 mm, I1=7.5 Mw/𝑐𝑚2, 

temperature = 298 k, x=0.5 µm 
 

Input 

Wavelength 

(nm) 

Output 

Wavelength 

(nm) 

𝜑𝑖 

(radian) 

Slab thickness 

(µm) 

Efficiency (%) 

Ray optics 

Approach 

Nonlinear 

Guided 

Wave approach 

2200 550(FH) 0.4872 

0.64577 

0.76021 

0.84417 

0.73304 

151 0.69326 0.14486 

153 0.63017 0.13368 

155 0.58275 0.11624 

157 0.51639 0.10275 

159 0.49372 0.09365 

2128 

 

 

 

 

2940 

532(FH) 

 

 

 

 

588(FTH) 

0.81507 

0.69639 

0.70511 

0.7278 

0.68591 

0.492 

0.499 

0.497 

151 0.70097 0.10576 

153 0.67457 0.10242 

155 0.61424 0.09372 

157 0.5979 0.08655 

159 

151 

153 

155 

0.50268 

0.0189 

0.0159 

0.011 

0.07465 

0.00395 

0.00305 

0.00251 

 

 

Lambda=2.128 µm, temperature=298k, θi =0.81507 radian, d=150 µm, 

x=0.5 µm 
 

 
 

Fig. 7. Variation in efficiency as a function of number of bounces 

for generating 532 nm FH wavelength 

 

 

5.3. Effect of variation in beam waist 

 

Varying the beam waist has a considerable impact on 

the efficiency and stability of the harmonic generating 

process. Smaller beam waists improve peak intensities, 

which in turn boosts the efficiency of nonlinear 

conversion; nevertheless, this can compromise stability 

due to the difficulties associated with the impacts of 

thermal effects. An optimized beam waist balances these 

competing factors, ensuring robust and efficient harmonic 

generation. A larger beam waist (Fig. 10) results in a lower 

peak intensity, which in turn leads to a reduction in the 

efficiency of the conversion. 

 

 

 
 

Fig. 8.  Variation in efficiency as a function of slab length for 

generating 588 nm FTH wavelength 

 

 
 
 

Fig. 9. Variation in efficiency as a function of Number of 

bounces for generating 588 nm FTH wavelength 
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6. Discussion 
 
Gaussian lasers are more common and cost-efficient 

than laser sources with other beam profiles like Laguerre 

Gaussian beam [21]. Most high-quality, single-mode 

laser sources emit a beam following a low-order Gaussian 

irradiance profile, which is also known as the TEM00 mode 

[22,23]. Lower-quality sources will have some level of 

other laser modes present as well, but it is often assumed 

that lasers have an ideal Gaussian profile to simplify 

system modelling [23,24]. In spite of variations in peak 

value or beam size, the irradiance profile of a Gaussian 

beam propagating through an optical system remains 

Gaussian. This means that Gaussian beams remain 

constant under transformations [22]. 

Lithium niobate is a popular electro-optic material due 

to its high birefringence, ferroelectricity, and nonlinear 

optical characteristics. Photonic devices, waveguides, 

frequency converters, and optical modulators are some of 

the most common applications for this material. It has 

lower resistance to photorefractive damage [26]. MgO 

doping in LiNbO₃ enhances its resistance to 

photorefractive damage and improves thermal stability, 

making it suitable for high-power applications. Typical 

MgO doping levels range from 5 to 7 mol%. Maintaining 

5–7 mol% MgO ensures optimal photorefractive 

resistance. Maintaining 5–7 mol% MgO ensures optimal 

photorefractive resistance [12,25]. The primary method for 

preparing MgO:LN crystals is the Czochralski method.  

Several methods, including Proton Exchange (PE), Direct 

Laser Writing, Ion Implantation, can be utilized in order to 

fabricate waveguides of MgO:LN. Precise temperature 

management is critical for stoichiometric composition 

during crystal growth [11,26]. Annealing removes internal 

stress and defects, improving optical quality. Proper 

cladding ensures confinement of light within the 

waveguide [15]. 

 

 

 
 

Fig. 10. Variation in efficiency as a function of beam waist  

for generating 550 nm FH wavelength

 

 

Table 3. Comparison of the proposed technique with the reported processes 

 

SL 

NO. 

Phase 

matching 

Process 

Crystal 

material 

Input 

wavelength 

No. of 

crystal 

Crystal 

length 

Efficiency 

(%) 

Normalized 

efficiency  

(%/watt) 

Reference 

1 

 

 

QP M 

 

 

PPKTP 

 

 

1560 nm 

(FH) 

 

2 

 

 

15 mm,  

10 mm 

10-5~ 

10-6 

2.5
× 10−6~2.5
× 10−7 

[27] 

 

2 Not     

mentioned 

AgGaSe2 

ZnGeP2 

2.55 µm  

(FH) 

2 20 mm, 

10 mm 
1.17× 10−5 

 

6.88 × 10−6 [28] 

3 Not 

mentioned 

LiNbO3 2 µm (FH) 1 1 cm 3.3 × 10−6 3.458 × 10−9 [4] 

4  

QPM 

Periodically 

poled 

LiNbO3 

3797 nm 

(FH) 

1 1 cm Not 

mentioned 

Not mentioned [6] 

5 TIR-QPM MgO: LN 2200 nm 

(FH) 

2128 nm 

(FH) 

2940 nm 

(FTH) 

1 

1 

1 

5 mm 

5.1 mm 

5.2 mm 

 

 

0.15418 

0.11872 

0.00859% 

 

 

1.3087× 10−4 

1.0077× 10−4 

7.29148×10−6 

 

Proposed 

 

 

 

 

The FH and FTH generation wavelength have been 

selected in such a way that the wavelengths have potential 

application in medical science as well as the lower order 

QPM is possible at those wavelengths. As an additional 

factor to take into account in this work, we analyzed the 

performance of the frequency conversion system in 

relation to the varying length and thickness of the slab. In 

order to maximize the efficiency of frequency mixing and 

harmonic generation approach, phase-matching is a crucial 

requirement. The only governing variable that has any 

https://www.laserfocusworld.com/lasers-sources/article/14177450/the-use-of-laser-diodes-is-leading-to-handheld-medical-instruments
https://www.laserfocusworld.com/lasers-sources/article/14177450/the-use-of-laser-diodes-is-leading-to-handheld-medical-instruments
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influence either on the global phase shift, or more 

specifically, the Fresnel phase shift that takes place under 

TIR, is the incidence angle. For a specific combination of 

wavelength and polarization state, the additional phase 

shift, and the dispersion mismatch in phase, ΔKLb, are 

both fixed values. 

The incidence angle has been tuned so that the 

resonant QPM criteria and the phase-matching 

requirement are both met for the specified pump 

wavelength. The length of the slab has been estimated in 

such a manner that the total of the interaction lengths 

inside the slab is smaller than the corresponding value of 

the Rayleigh range. Furthermore, QPM order is defined as 

the ratio of the interaction length between two consecutive 

bounce points to the coherence length for the specific 

wavelength. The slab thickness and the incidence angle are 

the two governing parameter that take into consideration 

when determining the QPM order. QPM conversion 

efficiency improves as the order decreases. Therefore, in 

order to achieve a lower-order QPM, a slightly thinner 

thickness has been taken into account for this analysis. In a 

gaussian beam-based frequency conversion approach, the 

diffraction effect of NLR causes the peak conversion 

efficiency to grow up to a specific slab length, after which 

it begins to decrease. The peak conversion efficiency of 

0.15488% has been observed at 5 mm slab length for 

generating 550 nm (FH) wavelength.  

The effect of limiting factors has been considered in 

this analysis. The length of the crystal that can be used will 

be shorter because of the GH shift. A GH shift of 1.8 μm 

has been observed at the pump wavelength of 2200 nm for 

the slab length of 8 mm. Light is scattered upon reflection 

due to the roughness. The TIR coefficient decreases as a 

result of this. The effect of surface roughness can be 

minimized by using highly polished surface of the 

material. Lights are diffracted due to NLR. The impact of 

NLR in gaussian beam based frequency conversion 

scheme can be mitigated by using slab lengths that are 

lower than the Rayleigh range. Also, by employing non-

gaussian beam profiles, such as Laguerre-Gaussian or 

Bessel gauss beams, which are non-diffractive in nature, 

can reduce the effect of NLR. 

 

 

7. Conclusion 
 

In this paper, FH and FTH frequency conversion 

using TIR-QPM and Guided wave approach in a parallel 

slab geometry of anisotropic material (MgO: LN) has been 

described analytically. When guided wave analysis is 

taken into account, the benefit is found because of two 

reasons – (i) waves exhibiting non-collinearity and (ii) the 

GH shift accounts in a built-in way, thus providing more 

realistic results as told by Raybaut et al. [9]. The proposed 

scheme demonstrates the technologically simple idea of 

QPM by utilizing TIR phenomena in the geometry of a 

parallel plate. This scheme has several advantages over the 

conventional methods, such as cascaded FH generation 

and quadrature frequency conversion methods that demand 

the utilization of multiple crystals for the conversion 

process. TIR-QPM method provides better efficiency as 

compared to conventional cascaded FH generation in a 

single crystal. The cascaded FH generation process in a 

single crystal is reported by Brett A. Hooper et al. [4] in 

LiNbO3, where conversion efficiency is much less than 

our proposed frequency converter. 
When using the ray-optics approach and limiting 

factors are considered, in a parallel slab geometry of 

MgO:LN length of 5 mm, the efficiency is as high as 

0.75477 % with fundamental input wavelength at 2.2 µm. 

Next, with the non-linear guided wave approach (under 

loss condition), which is a more realistic approach, it has 

been observed that the efficiency is not as high as that of 

ray optics. The conversion efficiency comes out to be 

0.15418 % for a FH wavelength of 550 nm and 0.00859% 

for a FTH wavelength of 588 nm. It is to be mentioned 

here that the effects of absorption loss, reflection loss, 

Goos-Hänchen shift and NLR are taken into account in the 

conversion process. 

From the application point of view, FH generation 

using MgO:LN material for generating 532 nm 

wavelength can be useful in fluorescence spectroscopy, 

optical alignment, green light illumination, and in some 

medical applications like treating vascular skin lesions, 

[29] endoscopy [30]. 550 nm can be used in ozone 

monitoring instruments, [31] flow cytometry [32]. Also, 

588 nm can be used in Light Biosciences [33]. 

 

Appendix-A: Computation of the harmonic Field 

Amplitude 

 

TM Modes 

The components of the fields have been defined by 

taking into account the slowly varying amplitudes of the 

mode f as, 
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TE Modes 

The field function of the generated harmonic field 

with gradually varying amplitudes of mode h can be 

expressed as 

( )

y ,E (x,z,t) ( , ) ( )
m
hi m t zm m m

h h h y yA r z E x e e cc
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=  +
  

 (A.4)                                                                                                                  

 

Here, m=4,5 

In the presence of perturbation, it is possible to derive 

the wave equation from Maxwell's equation in a direct 

manner as 
2 2

2

2 2
( , ) [ ( , )]

y

y NL

E
E r t p r t

t t
 

 
 = +

 
         (A.5)                                                                                                            

The nonlinear polarization amplitude for the perturbed 

case is given by 
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( )

0 ( )m m

NL xP E =                        (A.6)                                                                                                                                                                                                                           

Since 

2

2

( ) ( )m m
mh h
h

A z A z

z dz

 


 
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
, we may 

disregard the term  

2

2

( )m

hA z

z




  for slow variation. 

After the first bounce, the coupling mode equation for 

generated FH field using TIRQPM can be expressed as, 
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Following the first bounce, the coupling mode 

equation for the generated FTH field by the use of 

TIRQPM can be stated as 
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The increment in the amplitude of FH fields along the 

z-axis can be expressed by using the following integral 
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It is also possible to express the increment in the 

amplitude of FTH fields along the z-axis by utilising the 

following integral: 
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